Meta-DNA: synthetic biology via DNA nanostructures and hybridization reactions.
نویسندگان
چکیده
Can a wide range of complex biochemical behaviour arise from repeated applications of a highly reduced class of interactions? In particular, can the range of DNA manipulations achieved by protein enzymes be simulated via simple DNA hybridization chemistry? In this work, we develop a biochemical system which we call meta-DNA (abbreviated as mDNA), based on strands of DNA as the only component molecules. Various enzymatic manipulations of these mDNA molecules are simulated via toehold-mediated DNA strand displacement reactions. We provide a formal model to describe the required properties and operations of our mDNA, and show that our proposed DNA nanostructures and hybridization reactions provide these properties and functionality. Our meta-nucleotides are designed to form flexible linear assemblies (single-stranded mDNA (ssmDNA)) analogous to single-stranded DNA. We describe various isothermal hybridization reactions that manipulate our mDNA in powerful ways analogous to DNA-DNA reactions and the action of various enzymes on DNA. These operations on mDNA include (i) hybridization of ssmDNA into a double-stranded mDNA (dsmDNA) and heat denaturation of a dsmDNA into its component ssmDNA, (ii) strand displacement of one ssmDNA by another, (iii) restriction cuts on the backbones of ssmDNA and dsmDNA, (iv) polymerization reactions that extend ssmDNA on a template to form a complete dsmDNA, (v) synthesis of mDNA sequences via mDNA polymerase chain reaction, (vi) isothermal denaturation of a dsmDNA into its component ssmDNA, and (vii) an isothermal replicator reaction that exponentially amplifies ssmDNA strands and may be modified to allow for mutations.
منابع مشابه
Meta-DNA: A DNA-Based Approach to Synthetic Biology
The goal of synthetic biology is to design and assemble synthetic systems that mimic biological systems. One of the most fundamental challenges in synthetic biology is to synthesize artificial biochemical systems, which we will call meta-biochemical systems, that provide the same functionality as biological nucleic acids-enzyme systems, but that use a very limited number of types of molecules. ...
متن کاملDiscovering anomalous hybridization kinetics on DNA nanostructures using single-molecule fluorescence microscopy.
DNA nanostructures are finding diverse applications as scaffolds for molecular organization. In general, components such as nucleic acids, proteins, and nanoparticles are attached to addressable DNA nanostructures via hybridization, and there is interest in exploiting hybridization for localized computation on DNA nanostructures. This report details two fluorescence microscopy methods, single-p...
متن کاملModeling DNA Nanodevices Using Graph Rewrite Systems
DNA based nanostructures and devices are becoming ubiquitous in nanotechnology with rapid advancements in theory and experiments in DNA self-assembly which have led to a myriad of DNA nanodevices. However, the modeling methods used by researchers in the field for design and analysis of DNA nanostructures and nanodevices have not progressed at the same rate. Specifically, there does not exist a ...
متن کاملHigh performance liquid chromatographic analysis of reduction products of a thiolated DNA for immobilization on gold nanoparticles
DNA-based nano-biosensors are emerging scope in the field of biosensors. Many synthetic single stranded functional DNAs have been applied for development of such sensors, recently. Immobilization of DNA oligonucleotides on the surface of gold nanoparticles is a key step in the development of most colorimetric nano-biosensors. The bound DNA is usually thiolated and forms Au-S covalent bond to th...
متن کاملA synthetic autonomous rotary nanomotor made from and fuelled by DNA
DNA nanostructures are made using synthetic DNA strands, the sequences of which are designed such that they will self-assemble into the desired form by hybridization of complementary domains. Various structures and devices have been presented, including DNA tweezers, nanorobots and a range of linear motors such as bipedal walkers. Inspiration for the latter is drawn from naturally occurring mol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 9 72 شماره
صفحات -
تاریخ انتشار 2012